
*vMU3AOUIIC INEGAPIC LAMONAMORI.. DUOUMEW*NT C1SE OSUS

-Ic

90- JULY 1U70

~~Orguflou med Mhaintemnanc of Large
Ordered Indices

OCT 7 G

Ito: sa .i

MATHEMMATrICAL&4 INPORMATION SCIENCES

-ISC LAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

D1-82-09 89

ORGANIZATION AND MAINTENANCE OF LARGE

ORDERED INDICES

by

R. Bayer

and

E. McCreight

Mathematical and Information Sciences Report No. 20

Mathematical and Information Sciences Laboratory

BOEING SCIENTIFIC RESEARCH LABORA.TORiES

July 1970

ABSTRACT

Organization and maintenance of an index for a dynamic random

access file is considered. It is assumed that the index must be kept

on some pseudo r .2J-1om access backup store like a disc or a drum. The

index organi>,ation described allows retrieval, insertion, and deletion

of keys in time proportional to 1½gkI where I is the size of the

index and k is a device dependent natural number such that the per-

formance of the scheme becomes near optimal. Storage utilization is at

least 50% but generally much higher. The pages of the index are organized

in a special data-structure, so-called B-trees. The scheme is analyzed,

p,arformance bounds are obtained, and a near optimal k is computed.

Lxperiments have been performed with indices up to 100,000 keys. An

index of size 15,000 (100,000) can be maintained with an average of 9

(at least 4) transactions per second on an IBM 360/44 with a 2311 disc.

K•v Words and Phrases: Data structures, random access files, dynamic

index maintenance, key insertion, key deletion, key retrieval, paging,

information retrieval.

(,P C;ategories: 3. 70, L.7i, 3.74.

1. Introduction

In this paper we consider the problem of organizing and maintaining

an index for a dynamically changing random access file. By an irdJc

we mean a collection of index elements which are pairs (x,x) of fixed

size physically adjacent data items, namely a key x qnd some associated

information u. The key x identifies a unique element in the index,

the associated information is typically a pointer to a record or a

collection of records in a random access file. For this paper the

associated information is of no further interest.

We assume that the index itself is so voluminous that only rather

small parts of it can be kept in main store at one time. Thus the bLilk

of the index must be kept on some backup store. The class of backup

stores considered are pseudo radom access devices which have a rather

long access or wait time--as opposed to a true random access device like

core store--and a rather high data rate once the transmission of physically

sequential data has been initiated. Typical pseudo random access devices

are: fixed and moving head discs, drums, and data cells.

Since the data file itself changes, it must be possible not only

to search the index and to retrieve elements, but also to delete and to

insert keys--more accurately index elements--economically. The index

organization described in this paper always allows retrieval, insertion,

and deletion of keys in time proportional to logkl or better, where I

is the size of the index, and k is a device dependent natural number

which describes the page size such that the performance of the maintenance

-2-

and retrieval scheme becomes near optimal.

In more illustrative terms theoretical analysis and actual experi-

nts show that it is possible to maintain an index of size 15000

with an average of 9 'etrievals, insertions, and deletions per second

in real time on an IBM 360/44 with a 2311 disc as backup store. According

to our theeietical analysis, it should be possible to maintain an

index of size !500000 with at least two transactions per

second on such a configuration in real time.

The index is organized in pages of fixed size capable of holding up

to 2k keys, but pages need only be partially filled. Pages are the

blocks of information transferred between main store and backup store.

The pages themselves are the nodes of a rather specialized tree,

a so-called B-tree, described in the next section. In this paper these

trees grow and contract in only one way, namely nodes split off a brother,

or two brothers are merged or "catenated" into a sinle node. The splitting

and catenation processes are initiated at the leaves only and propagate

t,,wari the root. if the root node splits, a new root must be introduced,

and this is the only way in which the height of the tree can increase.

hbe opposite pro-ess occurs if the tree contracts.

fhere are, of course, many competitive schemes, e.g., hash-codiig,

17,r ,rganiizing an index. For a large class of applications the scheme

presen ted in thisis paper offers significant advantages over others:

-3-

i) Storage utilization is at least 50% at any time and should

be considerably better in the average.

ii) Storage is requested and released as the file grows and con-

tracts. There is no congestion problem or degradation of

performance if Lhe storage occupancy is very high.

iii) The natural order of the keys is maintained an"d allows pro-

cessing based on that order like: find predecessors and

successors; search the file sequentially to answer queries;

skip, delete, retrieve a number of records starting from a

given key.

iv) If retrievals, insertions, and deletions come in batches,

very efficient essentially sequential processing of the index

is possible by presorting the transactions on their keys

and by using a simple prepaging algorithm.

-4-

B-Trees

Def. 2.1: Let h 1 0 be an integer, k a natural number. A directed

tree T is in the class T(k,h) of 3-trees if T is either empty (h=0)

or has the following properties:

i) Each path from the root to any leaf has the same length h,

also called the ;- 'w;+it of T, i.e., h = number of nodes in path.

ii) Each node except the root and the leaves has at least k + 1

sons. The root is a leaf or has at least two sons.

iii) Each node has at most 2k + 1 sons.

Number of Nodes in B-Trees: Let N . and N be the minimal and
min max

maximal number of nodes in a B-tree T C T(k,h). Then

Nm(= 1+2 (k+l) 0 + (k+1)1 + ... + (k+l)h-2)= i+ 2 ((k++)hla)

for h 2-'. This also holds for h = 1. Similarly one obtains

N = \ (2k+L)i = ((2 k+l)hl-1 h > 1.
ma x 2k1=0)

LppLr and lower bounds for the, numbe. N(T) of nodes of T r T(k,h) are

gi ven b :

N (T) = 0 if T t r(k,0); (2.1)

I + •- ((k+.)h1-1) N(T) -< ((2k+l)h-l) otherwise.

Xot t hat OWu C asCes (k,h) need not be disjoint.

-5-

3. The Data Structure and Retrieval Algorithm

To repeat, the pages on which the index is stored are the nodes of

a B-tree T E T(k,h) and can hold up to 2k keys. In addition the

data structure for the index has the following properties:

i) Each page holds between k and 2k keys (index elements)

except the root page which may hold between 1 and 2k

keys.

ii) Let the number of keys on a page P, which is not a leaf, be

Z. Then P has . + 1 sons.

iii) Within each page P the keys are sequential in increasing

order: x,, x 2, ... , x k < • < 2k except for the root page

for which 1 _' k _' 2k. Furthermore, P contains k + 1

pointers p0, pl, ... , p to the sons of P. On leaf pages

these pointers are undefined. Logically a page is then

organized as shown in Figure 2.

PO P.1 X x .. , pQ unused
[///space ,/,

Figure 1. Organization of a Page

The <. are the associated information in the index element1

(x.i i). The triple (xi,a ipi) or--omitting ,.--the pair

(xipi) is also called an cnty.

iv) Let P(pi) be the page to which pi points, let K(p.)

-6-

oe the seL of keys on the pages of that maximal subtree of

which P(pi) is the root. Then for the B-trees considered here

the following conditions shall always hold:

(Vy t K(po))(y < x,) (3.1)

(Vy K(pi)) (x. < y <x+ 1); i = 1,2,.... -1 (3.2)

iVy K(p))(x, < y) (3.3)

Figure 2 is an example of a B-tree in r(2,3) satisfying all the above

conditions. In the figure the a. are not shown and the page pointers
1

are represented graphically. The boxes represent pages and the numbers

outside are page numbers to be used later.

Retrieval AlJorithm: The flowchart in Figure 3 is an algorithm for

retri.oving a key y. Let p,r,s be pointer variables which can also

assume the value "undefined" denoted as u. r points to the root and is

u if the tree is empty, s does not serve any purpose for retrieval,

hut will be used in the insertion algorithm. Let P(p) be the page to

which p is pointing, then x 1 ... ,x are the keys in P(p) and

p.p the page pointers in P(p).

ihe retrieval algorithm is simple logically, but to program it for

.1 cenMputer one would use an efficient technique, e.g., a binary search,

to sc in i page.

(ot of Retrieval: Let hi be the height of the page tree. Then at

moý,t it pages must be scanned and therefore fetched from backup store

to retrieve a key v. We will now derive bounds for h for a given index

-7-

C14

CV) 0

(N 0%4

CWC)

C))

eel,

-8-

START

P P 1 r

I~igt S -. Ueren loih

YES STOP

-9-

of size I. The minimum and maximum number Im and I of keys

in a B-tree of pages in r(k,h) are:

m. 1 +m k(2 (k+])k--) = 2(k+l)h1 - - 1

'max 2kkL~' (k1 1

This is immediate from (2.1) for h 1: 1. Thus we have as sharp bounds

for the height h:

log•k+ 1(+1) _` h 1 1 + 1ogk+j(-i- for I _ 1,

(3.1)

h 0 for I = 0.

-10-

4. K.2v Insertion

The algorithm in Figure 4 inserts a single key y into an index

described in Section 3. The variable s is a page pointer set by the

retrieval algorithm pointing to the last page that was scanned or having

the value u if the page tree is empty.

Splitting a Page: If a page P in which an entry should be inserted

is already full, it will be split into two pages. Logically first insert

the entry into the sequence of entries in P--which is assumed to be in

main store--resulting ii, a sequence

p 0 , '(1 'P)' (xa'P2 . P2k+1

Now put the subsequence po,(xjjw),...,(xý,pk) into P and introduce

a new page P' to contain the subsequence

Pk+1'(xk+2'Pk+2)'('k+3'pk+3) .. (X2k+l'p 2 k+)

Let Q be the father page of P. Insert the entry (xk+ ,p'), where

p' points to P', into Q. Thus P' becomes a brother of P.

Inserting (xk+,,p') into Q may, of course, cause Q to split

too, and so on, possibly up to the root. If the splitting page P is

the root, then we introduce a new root page Q containing p,(xk+,,p')

whire p points to P and p' to P'.

Note that this insertion process maps B-trees with parameter k

into B-trees with parameter k, and preserves properties (3.1), (3.2),

To illustrate the insertion process, insertion of key 9 into the

tree in Figure 5 with parameter k = 2 results in the tree in Figure

2.

1START

apply retrieval
algorithm for

key y

(s=U? YE.S treei empt,,Jr~~o

(1) ey is lredy n inextak appoprcteac teion.

INO page with y

routine is P(s) full?
for P(s)

Sinsert entry I
(y, u) in P (s)

(1) Key y is already in index, take appropriate action.

Figure 4. Insertion Algorithm

tU-)
CN

(N

(9)

S4

C0%

F4F-

F-
F-GoJ

F- Vi

JJi

CV))

c-o

0r-4

to %0

N -'.

-13-

5. Cost of Retrievals and Insertions

To analyze the cost of maintaining an index and retrieving keys

we need to know how many pages must be fetched from the backup store

into main store and how many pages must be written onto the backup store.

For our analysis we make the following assumption: Any page, whose content

is examined or modified during a single retrieval, insertion, or deletion

of a key, is fetched or paged out respectively exactly once. It will

become clear during the course of this paper that a paging area to hold

h + 1 pages in main store is sufficient to do this.

Any more powerful paging scheme, like, e.g., keeping the root page

permanently locked in main store, will, of course, decrease the number

of pages which must be fetched or paged out. We will not, however,

analyze such schemes, although we have used them in our experiments.

Denote by f in (f max) the minimi-l (maximal) number of pages

fetched, and by wmin (W max) the minimal (maximal) number of pages

written.

Cost of Retrieval: From the retrieval algorithm it is clear that for

retrieving a single key we get

f . =1I; f = h; w . =w =Omin max min max

Cost of Insertion: For inserting a single key the least work is required

if no page sp1ftting occurs, then

fmin 1h; Wmin 1;

-14-

Most w,,ih i.; rcquired if all pages in the retrieval path including

the ro0ot pnie split into two. Since the retrieval path contains h

pages iiid we have to write a new root page, we get:

f = 11; w = 2h + 1m ax mlax

N•ote that h _itways denotes the height of the old tree. Although

this worst bound is sharp, it is not a good measure for the amount of

work which must generally be done for inserting one key.

If we consider an index in which keys are only retrieved or inserted,

b1it no keys are deleted, then we can derive a bound for the average amount

,t work to be done for building an index of I keys as follows:

1.chk p1t;a,' SPILL causes ono (or two if the root page splits) new

pies to be created. Thus the number of page splits occurring in building

!: i:a. of t items is bounded by n(I) - 1, where n(l) is the number of

p~i,.-.- in tc•, true. Since each page has at least k keys, except the root page

may: aave only 1, we get: n(I) - 1 + 1. Each single page split
*~hu the avge:age

-(ioses at ros t ; ;ii!l tlonal pages to be written. Thus the average

:,:"hcr of pages written per single key insertion due to page splitting

.\ :'.a s 11t d,:x not require inv additional page retrievals. Thus in

,,,. r ,- 'r in index without deletions we get for a single insertion:

I a1 k

-15-

6. Deletion Process

In a dynamically changing index it must be necessary to delete

keys. The algorithm of Figure 6 deletes one key y from an index and

maintains our data structure properly. It first locates the key, salv

Y" . To maintain the data structure properly, y. is deleted if it is

on a leaf, otherwise it must be replaced by the smal lest key in the

subtree whose root is P(pi). This smallest key is found bv going

from P(pi) along the p 0 pointers to the leaf page, say L, and

taking the first key in L. Then this key, say x1 , is deleted from

L. As a consequence L may contain fewer than k keys and a catena-

tion or underflow between L and an adjacent brother is performed.

Catenatioi: Two pages P and P' are called ,-': " , -!". if

they have the same father Q and are pointed to bv adjacent pointers

in Q. P and P' can be catenated, if togeth-ler they have no more than

2k keys, as follows: The three pages of the form

P
p ,)• (x ,p) ,. .. ,(x ,p) p N',(x +,p

can be replaced by two pages of the form:

(yj_,p) (yj,

-16-

As a ce!ýsequence of deleting the entry (yj~p') from Q it is now

possible that Q contains fewer than k keys and special action must

be taken for Q. This process may propagate up to the root of the

tree.

Underflow: If the sum of the number of keys in P and P' is greater

than 2k, then the keys in P and P' can be equally distributed.

the process being called an underflow, as follows:

Perform the catenation between P and P' resulting in too large

a P. This is possible since P is in main store. Now split P

"in the middle" as described in Section 4 with some obvious minor modi-

fica tions.

Note that underflows do not propagate. Q is modified, but the

number of keys in it is not changed.

To illustrate the deletion process consider the index in Figure 2.

Deleting key 9 results in the index in Figure 5.

-17-

START

apply retrieval
algorithm for y

SYES

•yon leaf) YES delete y
page? -•from leaf

retrieve pages

down to leaf
along p0 pointers

replace y by
first key on

leaf page

delete first if necessary, STOP
key on leaf catenations sessful

and underflow

(1) The key to be deleted is not in index, take appropriate action.

Figure 6. Deletion Algorithm

-18-

Cost of De let ions

For a snccessful deletion, I.e , if the key y to be deleted is in

thL index, the least amount of work is required if no catenations or

Iinde rf lows are performed and v is in a leaf. This requires

f = h; w. = 1;

If v is not in a leaf and no catenations or underflows occur,

then

f = h; w = 2;

A maximal amount of work must be done if all but the first two pages

in the retrieval path are catenated, the son of the root in the retrieval

path has an underflow, and the root is modified. This requires:

f = 2h - 1; w = hi + 1;

A- in the case of the insertion process the bounds obtained are

sharp, but very far apart and assumed rarely except in pathological

eX;aMP ls. To obtain a more useful measure for the average amount of

work necessary to delete a key, let us consider a "pure deletion process"

during w icih all keys in an index I are deleted, but no keys are

Tinse r ted.

Niisregsirding for the moment catenations and underflows we may get

t =i and w, = 2 for each deletion at worst. But this is the best

iowid lt, iinablc if one considers an example in which keys are always

. , Ji r L, t i ot ' IW page.

-19-

Each deletion causes at most one underflow, requiring f I

additional fetches and w = 2 additional writes.

The total number of possible catenations is bounded by

I - I
n(I) - 1, which is at most k Each catenation causes I

additional fetch and 2 additional writes, which results in ;in average

f3 = k

w 2(-1)- 2
3 f 1k k

Thus in the average we get:

i
f =fl + f + fa < h + 1 +

a 2

2 2
w =w + w + W 2 + 2 + -4 +
a 1 2 3 k k

-20-

8. P.gLy Overflow and Storage Utilization

ILI the scLhe'[c described so far utilization of back-up store

mav be as low as 50% in extreme cases--dipregarding the root page--if

all pages contain only k keys. This could be improved by avoiding

cerLainl page splits.

An between two adjacent brother pages P and P' can be

perfornmd as follows: Assume that a key must be inserted in P and

P is already full, but P' is not full. Then the key is inserted

into the key-sequence in P and an underflow as described in Section 6

between the resulting sequence and P' is performed. This avoids the

need to split P into two pages. Thus a page will be split only if

bcthi adjacent brothers are full, otherwise an overflow occurs.

In an index without deletions overflows will increase the storage

utilization in the worst cases to about 66%. If both insertions and

d.eletions occur, then the storage utilization may of course again be as

low as 50;. For most practical applications, however, storage utilization

-ihould •e improved appreciably with overflows.

One could, of course, consider a larger neighborhood of pages than

,;st thlC adjacent brothters as candidates for overflows, underflows,

in,] atenat ions and increase the minimal storage occupancy accordingly.

;;,tnds for thc cost of insertions for a scheme with overflows are

., iS i v e r ived .is:

fmin =1h; w min l

f = 3h - 2; w m 2h + 1max max

-21-

For a pure insertion process one obtains as bounds for the average

cos :

f < h + 2 + 2; W < 3 +
a + 2 jý Wa<

3
+ k

It is easy to construct examples in which each insertion causes an

cverflow, thus these bounds cannot be improved very much without specal

assumptions about the insertion process.

-22-

9. Maintenance Cost for Index with Insertions and Deletions

Thea main purpose of this paper is to develop a data structure which

allows economical maintenance of an index in which retrievals, insertions,

and deletions must be done in any order. We will now derive bounds on

the processing cost in such an environment.

The derivation of bounds for retrieval cost did not make any assump-

tions about the order of insertions or deletions, so they are still valid.

Also, the minimal and maximal bounds for the cost of insertions and dele-

tions were derived without any such assumptions and are still valid. The

bounds derived for the average cost, however, are no longer valid if

insertions and deletions are mixed.

"The following etxample shows that the upper bounds for the average

cost cannot be improved appreciably over the upper bounds of the cost

deriVCed for a single retrieval or deletion.

i.Xaia)I: -Consider the trees T, in Figure 2 and T, in Figure 5.

Oeleting key 9 from T, leads to T5 , and inserting key 9 in T
51 5

lte•ds back to 'T. Consider a sequence of alternating deletions and

i:i, rtious of key 9 being applied starting with T .

2, I:74o page overflows, but only page splits occur:

i) Each deletion of key 9 from T 2 requires:

retrievals to locate key 9, namely pages 1, 2, 6.

i retrieval of brother 5 of page 6 to find out that

pages 5 and 6 can be catenated.

-23-

2 pages, namely 5 and 2 are modified and must be written.

Pages 6 and 3 are deleted from the tree T2 .

Thus f = 5 and w =2. But f = 5 = 2h - 1 f and
max

w = 2 =- h - 1 = w - 2.max

ii) Each insertion of key 9 into T5 requires:

2 retrievals to locate slot for 9 in page 5.

5 pages mustbe written, namely 1, 2, 3, 5, 6.

Thus

f =2 =h= fmay

w = 5 = 2h + 1 = wmax

Case 2: Consider a scheme with page overflows.

i) Deletion of key 9 leads to the same results as in Case 1.

ii) Insertion of key 9 requires:

2 retrievals to locate slot for 9 on page 5.

2 retrievals of brothers 4 and 7 of 5 to find out that

5 must be split.

5 pages must be written as in Case 1.

Thus:

f = 4 = 3h - 2 = f
max

w = 5 = 2h + 1 = w
max

Analogouis examples can be constructed for arbitrary hI and k.

From the inalysis it is clear that the performance ot our scheme depends

on the actual sequence of insertions and deletions. The interference

-24-

between insert4ions and deletions -ay degrade the performance of the

scheme as opposed to doing insertions or deletions only. But even in

the worst cases this interference degrades the performance at most by a

factor of 3.

It is an open question how important this interference is in any

actual applications and how relevant our worst case analysis is.

Although the derivable cost bounds are worse, the scheme with overflows

performed better in our experiments than the scheme without overflows.

0.,A

4J -4 -

4-' -.- 4i vi viN

- -4 C,

0 3; IH C+ 11

*-,4 4-i0~ Cl 0 j
4j 0

0 -,4 -4 0

04- ." r- =C
00

4j0 0 -L-ý.0
a) -= :3 -ý1ý

.,1 -, -4 3: C

0* 1-4 0) -1 w

-4-

a)jI 00 0ý 4-It2)

.14 -4

o j r_4.0
01- 00

-4-

4-' 0)4 .N00 -'
04 0: -4 11 roo1~J +

-0 0' II0 I>

00 04 0

0 .
* 4 -4 - -4.00;4L0-

-. 4 4-4~ Cl 4

000.)
,-40~f4-Q'- V a

-26-

10. Choice of k

The performance of our scheme depends on the parameter k. Thus

care should be taken in choosing k to make the performance as good as

possib le.

To obtain a very rough approximation to the performance of the

scheme we make the following assumptions:

i) The time spent for each page which is written or fetched can

be expressed in the form:

S+ S(2k+l) + y Zn(vk+l)

a: fixed time spent per page, e.g., average disc seek time

plus fixed CPU overhead, etc.

•: transfer time per page entry.

-y: constant for the logarithmic part of the time, e.g.,

for a binary search.

factor for average page occupancy, 1 _ v _< 2.

We assume that modifying a page does not require moving keys within

a page, but that the necessary channel subcommands are generated to

write a page by concatenating several pieces of information in main

.storce. T'his is the reason for our assumption that fetching and writing

a1 page takes the ,;ame time.

i) The average number of pages fetched and written per single

transaction in an environment of mixed retrievals, insertions,

and deletions is approximately proportional--see Figure 7--to

-27-

h, say 6h. The total time T spent per transaction can

then be approximated by:

T = 6h(a+8(2k+l)+y ,n(vk+I)) . Approximating h itself by:

h ; log vk+ 1 (1+1) where I is the size of the index, we get:

Tz Ta = 6 l (++ý(2k+l)+y kn(vk+l))

Now one easily obtains the minimum of T if k is chosen sucha

that:

a = 2 ((vk+l) Zn(vk+l) - (2k+l)) = f(k,v)

Neglecting CPU time, k is a number which is characteristic for

the device used as backup store. To obtain a near optimal page size

for our test examples we assumed et = 50 ms and S = 90 ;s. According

to the table in Figure 8 an acceptable choice should be 64 < k < 128.

For reasons of programming convenience we chose k = 60 resulting in a

page size of 120 entries.

k f(k,l) f(k,l.5) f(k,2)
2.OOOOE+00 1.59167E+00 2.3935rE+00 3.0471lF+C0
4.OOOOOE+O0 7.09437E+00 9.16182E+00 1.07750E+01
9.00000}!+00 2.25500E+01 2.74591E+01 3.1I64FE+O1
1.60000E+01 6.33292E+01 7.42958E+01 8.23847E+01
3.20000E+01 1.65760E+02 1.892G5E+02 2.06334•E+02
G.40000E+O1 4. 13670E+02 4.62662E+02 4. 9791.5E+02
1.28000E+02 9.96831E+02 1.0972GE+03 1.I,911E+03
2.56000E+02 2.33922E+03 2.5h2q9E+03 2.SR826E+03
5.12000E+02 5.37752E+03 5.78(42E+03 6.08075F+03
1.02400E+03 1.21625E+04 1.21921lE+04 1.3574RE+04
2.040600F+03 2.7150GE+04 2.88062E+04 o9918E+04
4.OqGOOE+03 5.99647E+04 6.32306E+04 6.563343E+04
8.19200E+03 1.31269E+05 1.37906E+n5 1.4?FI7E÷05
1.63840E+04 2.85235E+05 '.9514F+05 3.n793nE+05
3.27680E+04 6.15877E+05 6.42442E+05 6.61212F+05
6.55360E+04 1.32258E+06 1.37572E+06 1.41342E+OC

Figure 8. The Function f(k,v) for Optimal
Choice of k

-28-

'The size of the index which can be stored for k = 60 in a page

tree of a certain height can be seen from Figure 9.

Height of Minimum Maximum
page tree index size index size

1 1 120
2 121 14640
3 7441 1771560

4 453961 214358880

Figure 9. Height of Page Tree and
Index Size

I i "4

-29-

11. Experimental Results

The algorithms presented here were programmed and their performance

measured during various experiments. The programs were run

on an IBM 360/44 computer with a 2311 disc unit as a backup store. For

the index element size chosen (14 8-bit characters) and index size

generally used (about 10,000 index elements), the average access mechanism

delay for this unit is about 50 ms, after which information transfer

takes place at the rate of about 90 ps per index element. From these two

parameters, our analysis predicts an optimal page size (2k) on the order

of 120 index elements.

The programming included a simple demand paging scheme to take advan-

tage of available core storage (about 1250 index elements' worta) and thus

to attempt to reduce the number of physical disc operations. In the

following section by virtual disc read we mean a request to the paging

scheme that a certain disc page be available in core; a virtual disc

read will result in a physical disc read only if there is no copy of

the requesteddisc page already in the paging area of core storage. A

irtual disc write is defined analogously.

At the time of this writing ten experiments had been performed.

These experiments were intended to give us an idea of what kind of

performance to expect, what kind of storage utilization to expect, and

so forth. For us the specification of an experiment consists of choosing

1) whether or not to permit overflows on insertion,

2) a number of index elements per page, and

-30-

a aL se.quence of transactions to be made against an initially

empty index.

At sLeveral points during the performa- -e of an experiment certain per-

fori,1nce variables are recorded, From these the performance of the

algorithms according to various performance measures can be deduced; to

wit

1) ' storage utilization

2) average niunber of virtual disc reads/transaction

3) average number of physical disc reads/transaction

4) average number of virtual disc writes/insertion or deletion

)) average number of physical disc writes/insertion or dclction

0) average number of transactions/second.

. nA," summari e the experiments. Each experiment was divided into

>.Vcra p111s1s , and at the end of each of these the performance variables

.:,',,r,, :.,•rej. Phases are denoted by numbers within parentheses.

C e :et'ntslpage, overflow permitted.

(I) I,),P) insertions sequential by key,

1,))•{ insertions, -)(retrievals, and 100 deletions uniformly

ranl:dom: in the key space.

ii: l I e~,:•t./page; otherwise identical to El.

' " ,uts/pa�,e otherwise identical to El.

: I, ' k.ts i ,e, overflow permitted.

. O il ji Oe t ions sequential by key,

.o!(-. t nall unif,,rmly random in key space,

-31-

(3) 10000 sequential deletions.

E5: 120 elements/page, overflow ý.ot permitted.

(1) 5000 insertions uniformly random in key space,

(2) 1000 retrievals uniformly random in key space,

(3) 5000 deletions uniformly random in key space.

E6: Overflow permitted; otherwise identical to E5.

E7: 120 elements/page, overflow permitted.

(1) 5000 insertions sequential by key,

(2) 6000 each insertions, retrievals, and deletions uniformly

random in key space.

E9: 250 elements/page; otherwise identical to E8.

ElO: 120 elements/page, overflow permitted.

(1) 100,000 insertions sequential by key,

(2) 1000 each insertions, deletions, and retrievals uniformly

random in key space,

(3) 100 group retrievals uniformly random in key space, where

a group is a sequence of 100 consecutive keys (staltistics

on the basis of 10000 transnctions),

(4) 10000 insertions sequential by key, to merge uniformly

with the elements inserted in phase (1).

-32-

Storage
used VR/T* PR/T VW/I or D PW/I or D T/Sec.

99(1) 99.8 2.2 0 2.3 .04 66.1

E11(2) 91.5 4.4 1.62 2.7 1.5 6.6

E2(1) 99.2 1.0 0 1.0 .008 94.5

['12(2) 87.3 2.5 1.15 1.3 1.1 6.7

E'3(1) 97.6 1.0 0 1.0 .004 100.0

11(2) 84.7 '.4 1.08 1.3 1.1 5.2

114(1) 99.2 1.0 0 1.0 .008 94.5

L4(2) 99.2 2.0- 19.5

E14(1) 2.0 .01 2.0 0 74.1

U5(2 1 67.1 1.0 .55 1.0 .56 17.0

L) (2) 67.1 2.0 .83 --- 18.2

12i (3) --- 4.0 .68 2.2 .65 12.4

Eo(l) 86.7 1.1 .55 1.1 .54 17.1

F[: (2) 86.7 2.0 .79 --.--- 24.3

()--- 4.0 .65 2.2 .62 13.4

4/(I) 96.9 1.0 0 1.0 .008 111.9

li(2 70.8 2.3 .83 1.3 .88 13.1

S4 . 1.3 .87 1.3 .85 10.1

-• 2 - 1 ',.9 3.7 1.00 3.0 1.00 9.5

1 1.1 .84 1.0 .82 8.5

- .2.2 2.3 .94 1.1 .96 8.2

I11(1) 99.8 1.9 0 1.9 .008 91.7

,2.1 4.1 1.94 1.8 1.54 4.2

4.0 .03 75.7

8, ,' 2.2 .10 2.2 .11 38.0

!,,:lhcrar't, somewhat misleading for deletions, due to the way the deletions
.r ,rrar •,,, int, the experiments. To find the necessary number of virtual

for ;c(pwtnt ial deletions subtract one from the number shown, and for
tii r ml it, It ions subtract one and multiply the result by about 0.5.

References:

Adelson-Velskii, G. M. and Landis, E. M. An Information Organization

Algorithm. DANSSSR, No. 2, 1962.

Foster, C. C. Information Storage and Retrieval Using AVL Trees.

Prcc. AC,' 20th VJat'Z. Conf. (1965), pp. 192-205.

Gladun, V. P. Storage Organization for Key Search and Recording.

Cybernetics, Vol. 1, No. 4, August 1965.

Landauer, W. I. The Balanced Tree and Its Utilization in Information

Retrieval. IEEE Trans. on Electronic Computers, Vol. EC-12, No. 6,

December 1963.

Sussenguth, E. H., Jr. The Use of Tree Structures for Processing

Files. Comm. ACM, Vol. 6, No. j, May 1963.

